Cherys Corporator 4 - 72 Bolston Victor Transam VD 20786 Telephone 301-731-8500

UNISYS

DATE:

December 23, 1994

PPM-95-113

TO:

B, Fafaul/311

FROM: SUBJECT: K. Sahu/300,1 KSahu
Radiation Report on HST/STIS

Part No. HCPL-5631 Control No. 11686

CC:

A. Sharma/311.0 OFA Library/300.1

A radiation evaluation was performed on HCPL-5631 (High CMR, High Speed Hermetically sealed Optocoupler) to determine the total dose tolerance of these parts. A brief summary of the test results is provided below. For detailed information, refer to Tables I through IV and Figure 1.

The total dose testing was performed using a ⁵⁰Co gamma ray source. During the radiation testing, five parts were irradiated under bias (see Figure 1 for bias configuration), and one part was used as a control sample. The total dose radiation levels were 1, 2, 3, and 10 krads*. The dose rate was between 0.06 and 0.11 krads/hour, depending on the total dose level (see Table II for radiation schedule). After the 10 krad irradiation, parts were annealed at 25°C for 168 hours. After each radiation exposure and annealing treatment, parts were electrically tested according to the test conditions and the specification limits** listed in Table III. These tests included three functional tests at 1MHz.

All parts passed initial electrical measurements. All irradiated parts passed all parametric and functional tests throughout all irradiation and annealing steps with no observable radiation-induced effects.

Table IV provides a summary of the mean and standard deviation values for each parameter after different irradiation exposures and annealing steps.

Any further details about this evaluation can be obtained upon request. If you have any questions, please call me at (301) 731-8954.

^{*}The term rads, as used in this document, means rads(silicon). All radiation levels cited are cumulative.

^{**}These are manufacturer's pre-irradiation data specification limits. No post-irradiation limits were provided by the manufacturer at the time these tests were performed.

C:\REPORTS\239.DOC

ADVISORY ON THE USE OF THIS DOCUMENT

The information contained in this document has been developed solely for the purpose of providing general guidance to employees of the Goddard Space Plight Center (GSFC). This document may be distributed outside GSFC only as a courtesy to other government agencies and contractors. Any distribution of this document, or application or use of the information contained herein, is expressly conditional upon, and is subject to, the following understandings and limitations:

- (a) The information was developed for general guidance only and is subject to change at any time;
- (b) The information was developed under unique GSFC laboratory conditions which may differ substantially from outside conditions;
- (c) GSFC does not warrant the accuracy of the information when applied or used under other than unique GSFC laboratory conditions;
- (d) The information should not be construed as a representation of product performance by either GSFC or the manufacturer;
- (e) Neither the United States government nor any person acting on behalf of the United States government assumes any liability resulting from the application or use of the information.

CAREPORTS\239.DOC

TABLE I Part Information

Generic Part Number:

HCPL-5631

HST/ST(S

Part Number:

HCPL-5631

HST/STIS

Control Number:

11686

Charge Number:

EE56044

Manufacturer:

Hewlett Packard

Lot Date Code:

9415

Quantity Tested:

6

Serial Number of

Control Samples:

52

Serial Numbers of

Radiation Samples:

53, 54, 55, 56, 57

Part Function:

High CMR, High Speed Optocoupler

Part Technology:

Bipolar

Package Style:

8-pin DIP

Test Equipment:

S-50

Test Engineer:

P. Srioudom

^{*} No radiation tolerance/hardness was guaranteed by the manufacturer for this part.

C:NEPORTS\239 DOC

TABLE II. Radiation Schedule for HCPL-5631

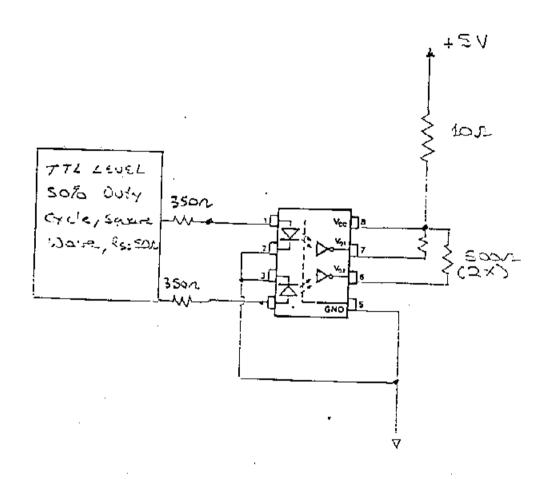
EVENTS	DATE
1) INITIAL ELECTRICAL MEASUREMENTS	11/08/94
2) 1 KRAD IRRADIATION (0.06 KRADS/HOUR)	11/08/94
POST-1 KRAD ELECTRICAL MEASUREMENT	11/16/94
3) 2 KRAD IRRADIATION (0.06 KRADS/HOUR)	11/16/94
POST-2 KRAD ELECTRICAL MEASUREMENT	11/17/94
4) 3 KRAD IRRADIATION (0.06 KRADS/HOUR)	11/17/94
POST-3 KRAD ELECTRICAL MEASUREMENT	11/18/94
5) 10 KRAD IRRADIATION (0.11 KRADS/HOUR)	11/18/94
POST-10 KRAD ELECTRICAL MEASUREMENT	11/21/94
6) 168-HOUR ANNEALING @ 25°C*	11/21/94
POST-168 HOUR ANNEAL ELECTRICAL MEASUREMENT	12/07/94

PARTS WERE IRRADIATED AND ANNEALED UNDER BIAS; SEE FIGURE 1.

^{*}High temperature annealing is performed to accelerate long term time dependent effects (TDE), namely, the "rebound" effect due to the growth of interface states after the radiation exposure. For more information on the need to perform this test, refer to MIL-STD-883D, Method 1019, Para. 3.10.1.

Table III. Electrical Characteristics of HCPL-5631

! !		FUNCTI	ONAL TESTS P	EPFCRMED	
PARAMETER ELECTION FUNCT 1 FUNCT 2 FUNCT 3	VCC VIL 4.5V 0.00 5.0V 0.00 5.5V 0.00 STO L	 V 3.30V FR V 3.30V FR V 3.30V FR I I	NDITIONS EQ=1.000MHZ EQ=1.000MHZ EQ=1.000MHZ CH = -0M4 3 REF= 1.5V 3 OL = 10.0MA3	PINS ALL 1/0 ALL 1/0 ALL 1/0	LIMITS AT +25C ONLY VCL<1.5V / VOH>1.5V VCL<1.5V / VOH>1.5V VCL<1.5V / VOH>1.5V
		DC PARA	METRIC TESTS	PERFORM	ED
PARAMETER =======	ACC AIF	VIH CO	NDITIONS	PINS	LIMITS AT +25C ONLY
IOH	5.5V 1.3V	1-3V VC IF	UT= 5.3V = 250VA	OUTS	>0.0MA , <250UA
VOL	5.5V 0.0V	3.3V LO	AD = 10MA	STUC	>+0.0V , <+0.6V
VF	0.0V 0.0V	5.1V IF	= 20MA	INS	> 0.0V / <1.9V
ICCH ICCL	5.5V 0.0V 5.5V 5.1V	0.0V IF 5.1V IF	= 0.0MA	VCC VCC	>+0.CA / <+28MA >+0.CA / <+36MA
TPLH TPHL	\$.0V 0.0V	3-85V LC	AD = 13MA AD = 13MA	OUTS OUTS	>+0:6NS : <108:6NS
		100	MMENTS/EXCEPT	TONS	
(1) ALL T	ESTS ARE PE	REDRMED AT	1 +250 ONLY.		


TABLE IV: Summary of Electrical Measurements after Total Dose Exposures and Annealing for HCPL5631 /1

						- '	Total Dos	e Expost	Total Dose Exposure (krads)				Annealing	alinu
			_	Initial			 -	1						25
E			_	1111	_		~1				_	=	168 hre	h.e
) est	5	Spec. Lim/2								_	•		001	·
#	Paramete Unite	i i			_								3	@25°C
	The state of the s	TUBIL	mean	DS.	meam	SC	mean	sd	mean	25	mean	5	ucom	3
-	IOH	0 250	2.05	0.60	3 04	20.0	2.403	200	6			1	146411	¥
2	102		+	⊥		⊥	2,02	200	3.03	1.97	5.11	96.0	3.05	96'0
		30	267	6.3	297	90.99 90.99	297	6.13	1.0	394	107	103	905	Ė
'n	'VF mV	0061	1518	27.6	71.7	Į	10 7 40 7			65.5		2,71	0.67	3, (I
-			+	⅃	1010	OFF	1213	0.0	1516	6.63	1515	0	1514	687
+	ILCE MA	0 78		0.13	25.61	113		0.14	e e	,	6 6,			
v.	10.01					1	1	***	C 7 T	U.I.4	1.2.5	61.15	7	0.15
,	ILA	3.0	15.6	91.0	15.6	0.16	14.4	0.17	14.6	10	400	1	1.4.	7.0
G	TPLH	1001	£ 05	0 40	0 02	500			7		70.0	0170	5.0	a []
Į.	THOLL	†			20.0	10.5	1.	4,04	7.Tc	1.62	51.7	19'0	51.7	0.67
	Cu TITY I	901	4.64	0.55	49.4	0.51	49.6	0.53	7.0F	0.52	40.0	6.50	E 4	
œ	FUNC1, Vcc=4.5V, Vi]=0.0V, Vih=3.3V, 1MH,	=3.3V. 1MH2	۵	 :	٥					2	7.7	7270	, 'nc	16.9
٥	CIDACA II. CIT III. O OIL VII.				7		4	į	4	•	<u>-</u>		2	•
	r oncl. vcc=5V, vil=-0.0V, Vih=3.3V, 1 VIHz	3V, 1MHz	: -		۵		4		٩	•	6			
0	FIINCL Vec=5 5V Vil=.0 0V Vib=3 3V 1MH.	-2 2V TASTE.	٦				•		J		-		F	
	A A A A A A A A A A A A A A A A A A A	-3.3 V, 1 W, IIZ	<u>.</u>		1		يــ		ب۵.		Α.		•	

Notes:

- The mean and standard deviation values were calculated over the five parts irradiated in this testing. The contro sample remained constant throughout the testing and is not included in this table.
 - These are manufacturer's pre-irradiation data sheet specification limits. No post-irradiation limits were provided the manufacturer at the time the tests were performed.
 - In the Functional Tests, "P" means that all parts passed this test at this irradiation or annealing level.

Figure 1. Radiation Bias Circuit for HCPL-5631

